Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(42): 8264-8273, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37869972

ABSTRACT

Self-assembled supramolecular hydrogels offer great potential as biomaterials and drug delivery systems. Specifically, peptide-based multicomponent hydrogels are promising materials due to their advantage that their mechanical and physical properties can be tuned to enhance their functionalities and broaden their applications. Herein, we report two-component assembly and formation of hydrogels containing inexpensive complementary anionic, BUVV-OH (A), and cationic, KFFC12 (B), peptide amphiphiles. Individually, neither of these components formed a hydrogel, while mixtures with compositions 1 : 1, 1 : 2, and 2 : 1 (molar ratio) as A : B show hydrogel formation (Milli-Q water, at pH = 6.79). These hydrogels displayed a good shear-thinning behaviour with different mechanical stabilities and nano-fibrous network structures. The 1 : 1 hydrogel shows good cell viability for human embryonic kidney (HEK-293) cells and CHO cells indicating its non-cytotoxicity. The biocompatible, thixotropic 1 : 1 hydrogel with a nanofiber network structure shows the highest mechanical strength with a storage modulus of 3.4 × 103 Pa. The hydrogel is able to encapsulate drugs including antibiotics amoxicillin and rifampicin, and anticancer drug doxorubicin, and it exhibits sustainable release of 76%, 70%, and 81% respectively in vitro after 3 days. The other two mixtures (composition 1 : 2 and 2 : 1) are unable to form a hydrogel when they are loaded with these drugs. Interestingly, it is noticed that with an increase in concentration, the mechanical strength of a 1 : 1 hydrogel is significantly enhanced, showing potential that may act as a scaffold for tissue engineering. The two-component gel offers tunable mechanical properties, thixotropy, injectability, and biocompatibility and has great potential as a scaffold for sustained drug release and tissue engineering.


Subject(s)
Hydrogels , Peptides , Animals , Cricetinae , Humans , Hydrogels/chemistry , Drug Liberation , Cricetulus , HEK293 Cells
2.
Chem Commun (Camb) ; 59(33): 4931-4934, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37010916

ABSTRACT

Surface modification of carbon dots via covalent conjugation with a dipeptide resulted in a dramatic change in the fluorescence emission from green to red. The hydrophobic peptide units linked to the surface of the modified carbon dots helped them to aggregate by generating a nanodot-fabricated nanofibrous network. This nanofibrous network showed excellent electrical conductivity and photo-switching behavior, better than those of the non-aggregated dots.

3.
J Pept Sci ; 29(10): e3492, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37038654

ABSTRACT

A dipeptide-appended perylenediimide (PDI-CFF) fluorescent molecule was designed, synthesized, and characterized. Though the molecule does not dissolve in any individual solvent, it dissolves well in an organic/water mixed solvent system such as tetrahydrofuran/water. This new fluorescent molecule was self-assembled in a tetrahydrofuran/water mixture to form both nanofibrous network structures and a nano ring structure. It has shown nanofibril morphology by the interactions with ferric ions (PDI-CFF/Fe3+ system) with diminishing fluorescent property. Interestingly, L-ascorbic acid (LAA) interacts with the PDI-CFF/Fe3+ system, showing turn-on fluorescence. Another interesting feature is that the minimum detection limits for Fe3+ ions and LAA are at the submicromolar levels of 6.2 × 10-8 and 3 × 10-8  M, respectively. Moreover, the fluorescent (10 µM) signals can be monitored by the naked eye under handheld UV lamp irradiation at 365 nm, and this is very convenient for the real application. In this study, the molecule offers the opportunity for processing these sequential fluorescence responses in order to fabricate a implication logic gate that includes NOT, AND, and OR simple logic gates using chemical stimuli (ferric ions and LAA) as inputs and fluorescence emission at 536 nm as output. The detailed mechanism of interactions of Fe3+ with PDI-CFF and LAA with the PDI-CFF/Fe3+ system is vividly studied by using Fourier transform infrared (FT-IR) analysis and fluorescence. Moreover, this new molecule was reusable for several times without significant loss of its activity. The construction of logic gates using biologically important molecules/ions holds future promise for the design and development of new bio-logic gates.


Subject(s)
Ascorbic Acid , Water , Spectroscopy, Fourier Transform Infrared , Ions/chemistry , Water/chemistry , Solvents
4.
Inorg Chem ; 62(8): 3485-3497, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36780226

ABSTRACT

Photoinduced electricity and proton conductivity led fuel cells have emerged, inter alia, as highly promising systems for unconventional energy harvesting. Notwithstanding their individual presence with widely acclaimed results, an integrating system with mutually inclusive manifestation of both features has hitherto not been reported in the literature. To achieve this objective, our approach was to design a ligand system incorporating prerequisite features of both systems, like extended conjugation instigating photophysical activity and functional groups facilitating ionic conduction. As such, we report herein the design, synthesis, and characterization of a pyridyl-pyrazole-based silver compound that exhibits an excellent photocurrent generation and very high proton conductivity. The X-ray single-crystal structure of the Ag complex fully supports our notion, showing extensive π-π conjugated aromatic rings with a protruding free sulfonic group, facing toward solvent-filled channels with numerous supramolecular interactions. The nanoscopic silver metallogel induces semiconductive features in the system which ultimately result in photoresponse behavior in terms of photocurrent generation with an whopping photocurrent gain (Ion/Ioff) of 21.2. To complete the idea of an integrated system, the proton conductivity values were also measured for both gel and crystalline states, while the former state yields a better result. The maximum proton conductivity value turns out to be 1.03 × 10-2 S cm-1 at 70 °C, which is higher than or comparable to those of well-known systems in the literature for proton conductivity.

5.
ACS Omega ; 7(37): 32849-32862, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36157781

ABSTRACT

Recently, organic materials with mixed ion/electron conductivity (OMIEC) have gained significant interest among research communities all over the world. The unique ability to conduct ions and electrons in the same organic material adds to their use in next generation electrochemical, biotechnological, energy generation, energy storage, electrochromic, and sensor devices. Semiconducting conjugated polymers are well-known OMIECs due to their feasibility for both ion and electron transport in the bulk region. In this mini-review, we have shed light on conjugated polymers with ionic pendent groups, block copolymers of electronically and ionic conducting polymers, polymer electrolytes, blends of conjugated polymers with polyelectrolyte/polymer electrolytes; blends of conducting polymer with small organic molecules including conducting polymer-peptide conjugates; and blends of nonconjugated polymers as mixed conducting systems. These systems not only include the well-studied OMEIC systems, but also include some new systems where the OMEIC property has been predicted from the typical current-voltage (I-V) plots. The conduction mechanism of ions and electrons, ion-electron coupling, directionality, and dimensionality of these OMEIC materials are discussed in brief. The different properties of OMEIC materials and their applications in diverse fields like energy, electrochromic, biotechnology, sensing, and so forth are enlightened together with the perspective for future improvement of OMEIC materials.

6.
Langmuir ; 37(31): 9577-9587, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34319747

ABSTRACT

This study vividly displays the different self-assembling behavior and consequent tuning of the fluorescence property of a peptide-appended core-substituted naphthalenediimide (N1) in the aliphatic hydrocarbon solvents (n-hexane/n-decane/methyl cyclohexane) and in an aqueous medium within micelles. The N1 is highly fluorescent in the monomeric state and self-aggregates in a hydrocarbon solvent, exhibiting "H-type" or "face-to-face" stacking as indicated by a blue shift of absorption maxima in the UV-vis spectrum. In the H-aggregated state, the fluorescence emission of N1 changes to green from the yellow emission obtained in the monomeric state. In the presence of a micelle-forming surfactant, cetyl trimethylammonium bromide (CTAB), the N1 is found to be dispersed in a water medium. Interestingly, upon encapsulation of N1 into the micelle, the molecule alters its self-assembling pattern and optical property compared to its behavior in the hydrocarbon solvent. The N1 exhibits "edge-to-edge" stacking or J aggregates inside the micelle as indicated by the UV-vis spectroscopic study, which shows a red shift of the absorption maxima compared to that in the monomeric state. The fluorescence emission also differs in the water medium with the NDI derivative exhibiting red emission. FT-IR studies reveal that all amide NHs of N1 are hydrogen-bonded within the micelle (in the J-aggregated state), whereas both non-bonding and hydrogen-bonding amide NHs are present in the H-aggregated state. This is a wonderful example of solvent-mediated transformation of the aggregation pattern (from H to J) and solvatochromism of emission over a wide range from green in the H-aggregated state to yellow in the monomeric state and orangish-red in the J-aggregated state. Moreover, the J aggregate has been successfully utilized for selective and sensitive detection of nitrite ions in water even in the presence of other common anions (NO3-, SO42-, HSO4-, CO32-, and Cl-).


Subject(s)
Nitrites , Water , Peptides , Solvents , Spectroscopy, Fourier Transform Infrared
7.
Soft Matter ; 17(30): 7168-7176, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34263281

ABSTRACT

This study demonstrates how the self-assembly pattern of two different and isomeric peptide-appended core-substituted naphthalenediimides (NDIs) affects the modulation of their optoelectronic properties. Two isomeric peptide-attached NDIs were synthesized, purified and characterized. Interchanging the position of attachment of the peptide units and the alkyl chains in the NDI has altered the respective self-assembling patterns of these isomeric molecules in the aggregated states. The isomer having a peptide moiety in the core position and the alkyl chain in the imide position (compound N1) forms face to face stacking or 'H' aggregates in aliphatic solvents including n-hexane, and n-decane, whereas compound N2, in which the peptide moiety is at the imide position and the alkyl chain is attached at the core position of NDI exhibits edge to edge stacking or J aggregates under the same conditions as it is evident from their UV-vis studies. The H aggregated species (obtained from N1) show inter-connected nanofibers, whereas the J aggregated species (obtained from N2) exhibit the morphology of helical nanoribbons. FT-IR and X-ray diffraction studies are in favor of the same aggregation behavior. The individual packing patterns of these two peptide-based isomers have a direct impact on their respective electrical conductivity. Interestingly, the H aggregated species shows 100 times greater current conductivity than that of the J aggregate. Moreover, it is only the H aggregated species that exhibits a photocurrent, and no such photocurrent response is observed with the J aggregates. Computational studies also support that different types of aggregation patterns are formed by these two isomeric molecules in the same solvent system. This unique example of tuning of optoelectronic behavior holds future promise for the development of new peptide-conjugated π-functional materials.


Subject(s)
Imides , Naphthalenes , Peptides , Spectroscopy, Fourier Transform Infrared
8.
ACS Appl Bio Mater ; 2(12): 5235-5244, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-35021527

ABSTRACT

A histidine-containing peptide-based amphiphile (P1) forms a transparent hydrogel within a pH range of 5.5 to 8.5 in phosphate buffer solution. Interestingly, thermal stability and mechanical stiffness are modulated by incorporating different types of dicarboxylic acids into the hydrogels. Inclusion of succinic acid with the molar ratio 2:1 (peptide:dicarboxylic acid) yields improved properties compared to the other tested dicarboxylic acids such as oxalic, glutaric and octanedioic acids. Transmission electron microscopic (TEM) images show the assembly of nanospheres is responsible for the hydrogel obtained from the assembly of native peptide. However, a morphological transformation takes place from nanosphere to nanofibers, when the peptide gels with succinic acid. XRD and FT-IR studies reveal interactions between peptide amphiphiles and the acids are responsible for the formation of a two-component hydrogel. Gel stiffness is enhanced considerably upon the addition of succinic acid to P1 with a 1:2 molar ratio. The two-component gel consisting of peptide and succinic acid has been successfully used for three-dimensional cell culture using mouse fibroblast cell line (NIH-3T3). This indicates future promise for the application of such peptide-based gels as tunable biomaterials in cell culture and regenerative medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...